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Numerical Simulation of Shock-Cylinder Interactions
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We apply two different high-order shack capturing schemes to
the study of a two-dimensional unsteady inviscid flow. In particular,
we study the interaction of a planar shock with a cylindrical volume
of alight gas {helium or hydrogen) contained in air. The two schemes
used are the Chebyshev collocation method and the ENO finite
difference scheme of Osher and Shu, and they are applied to a
physical model consisting of the Euler equations with a real gas
equation of state and multiple chemical species. The parallel imple-
mentation and low-level coding of the ENO scheme on the Thinking
Machines CM-5 results in much higher perfermance than is possible
on a standard serial or vector machine. The ENO code is compared
with an existing experimental result and agrees well with it. The
results of spectral and ENO calculations are then compared with
each other at different resolutions for a Mach 2 interaction. The
spectral scheme, though highly oscillatory in nature for discontinu-
ous problems {Gibbs}, accurately predicts both targe and fine scale
structures of the interaction between the shock and the light gas
cylinder. Good results can be recovered from the spectral results
by post-processing the raw numerical data to remove the Gibbs
phenomena. These results are compared with the ENO schemes,
The comparison is progressively better as the grid refinement and
numerical order of the ENO scheme is increased. This demonstrates
definitively the applicability and value of high order schemes to
flows with shocks and complicated non-linear physics. 1995
Academic Press, Inc.

I INTRODUCTION

Air-breathing SCRAM-jet engines preseat a dilticult chal-
lenge to the designer. Extremely rapid combustion is a necessity
in these engines, where supersonic flow through the reaction
chunber sweeps reactants out of the engine within a tew milli-
seconds. In addition, the reaction must take place well away
from the walls of the combustion chamber to prevent excessive
heat transfer to the engine itself.

In a combustion process with reactants that are not pre-
mixed, the combustion rate is limited by the diffusion raie of
reactants across the air—fuel interface. The rate can be increased
by stretching out the interface by the motion induced by a point
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vorlex; see Marble {14] for details, This not only inereases the
total length of the interface, but at the same time it steepens the
concentration gradient and thus the dilfusion rate of reactants by
bringing them in proximity to the interface. Marble ef al. [15]
suggest a way to induce this vorticity—to have a shock pass
through a jet of fuel nearly perpendicular to its axis (see Fig.
1). While passing through the region of inhomogeneous density
the shock will produce vorticity via the (Vp X Vp)/g? term in
the vorticity equation:

dow _ o Vp X Vp
Py =(w V)V - oV V+———p2 .

0y
If the fuel (usually hydrogen) and air have significantly different
densities, then an intense production of vorticity results from
the gradient in pressure across the shock in conjunction with
the gradient in fluid density across the interface. The vorticity
induced by the normal shock will be concentrated along the
fuel-air interface and have the largest magnitude where Vp is
perpendicular to Vp, e.g., at the top and bottom edges of the
circular fuel jet {12]. One might expect that the induced vorticity
surface would roll up to form a vortex propagating in the same
direction as the shock (for a light fuel). The fuel—air interface
should roll up along with the vorticity in this Now, and harring
unforeseen inleractions between the chemical reaction and the
generated flow fickd, mixing and the resulting combustion
should be efficient, '

1.1. Previous Work

The interaction between shock waves and inhomogencous
regions of density has been studied previously experimentally,
analytically, and numerically. The starting point for many has
been studying the Richtmyer-Meshkov instability of a shock
passing through a perturbed planar interface, beginning with
the experiments of Meshkov [17]. Experimental work in this
area continued with Zaitsev er al. [33] and Brouillette and
Sturtevant [4]. Oblique plain interfaces attracted the aitention
of Bonazza et al. [3] and Yang ef al. [31). Spherical interfaces
were first studied by Rudiger and Sommers [20]. Haas and
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Sturtevant [11] studied both cylindrical and spherical interfaces
experimentally, and analyzed the results in terms of linear
geometric optics as well as the Richtmyer—Meshkov instabil-
ity. These experimental results inspired the numerical work
of Picone and Boris [18] and further experimental work of
Jacobs [12] concentrating on the shock—cylinder interaction.

More recently a number of researchers have continued these
initial attempts at pumerical modeling. Among these, Yang
et al. [32] applied the FCT computation methodology to the
conservation equations in order to analyze a shock-cylinder
interaction, and derived scaling laws for the amount of circula-
tion produced by the interaction, the time scale of the interac-
tion, and vortex spacing. Ton [29] used a detailed physical real
gas model including detailed models of viscosity and chemistry
and examined the contribution of these to the production of
circulation and the degree of mixing and combustion. Samtaney
and Zabusky [21] studied oblique, sinusoidal and cylindrical
slow—fast interfaces using the shock polar analysis technique of
Henderson {10] to model the interaction and make comparisons
with a second order numerical scheme. Recently Quirk and
Karni [19] have updated the work of Picone and Boris by
carrying out an adaptive high resolution numerical simulation
of Haas and Sturtevant’s experiment using adaptive mesh re-
finrement (AMR) and a finite difference scheme based on primi-
tive instead of conservative variables. Numerical calculations
have begun in three dimensions as well. Waitz [30] has simu-
lated a realistic combustor design using a 3-D code at fairly
coarse resolution, and has made a comparison with experimental
data. Bell [2] has carried out a fully three-dimensional shock
sphere calculation using an adaptive code.

1.2. High-Order Schemes

The motivation for the current research has been the recent
development of high order shock capturing numerical schemes
for the computation of flows with shock waves [7, 5, 23], etc,
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Roll-up in a shock-cylinder interaction due to induced vorticity.

The fact that these schemes have less artificial dissipation than
lower order schemes makes them attractive for computation of
an unsteady transient flow, especially one where a solution is
required over several tens of thousands of time steps. The
presence of large amounts of artificial dissipation in lower order
methods suppresses fluid instabilities and results in artificially
smooth simulations. Lagging phase errors are another affliction
of these numerical methods. Some computational schemes ap-
plied previously also suffer from the anisotropic nature of the
resulting truncation errcr, producing odd artifacts that are
clearly visible in the computed results [32].

In this investigation, we apply two quite different high order
methods. One approach is based upon Chebyshev collocation
(pseudospectral) methods [6, 9]. A weak exponential smoothing
of the fluxes and the solution is used to stabilize the discretized
PDE [7]. With the recent development of sophisticated recon-
struction techniques for the removal of Gibbs phenomena [1],
the computed raw data can be post-processed to produce a
highly accurate solution away from the discontinuity. While
there is little rigorous theoretical support for this methodology
for a system of nonlinear PDEs, Maday and Tadmor [26] and
Tadmor [27, 28] have proved that spectral methods for nonlin-
ear scalar conservation laws using the spectral super-vanishing
viscosity formulation do converge spectrally. It is shown in an
upcoming paper of Don and Gottlieb that the spectral super-
vanishing viscosity method is essentially the same as filtering
with a specially designed low pass filter similar to the exponen-
tial filter described in Section 3.1, Building on previous suc-
cesses [5, 7] in simulating shock flows, we push the limits of
spectral methods by applying them to reactive flows with real
equations of state.

In any scientific computation, it is important to be able to
validate resulls from one numerical code with results from
others, preferably those with different numerical methodology.
ENO [23, 24] has demonstrated great promise in being a uni-
formly high order family of methods for shocked problems with
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essentially non-oscillatory behavior. One of the main stumbling
blocks for ENO methods has been the fact that a truly efficient
code on standard serial or vector machines has proven to be
quite elusive. Here we will address this problem by exploiting
the high-speed computational ability of a parailel computer—
the Thinking Machines CM-5. The CM-5 architecture aliows
an optimal implementation of the ENO scheine for fine meshes
and permits a high resolution comparison with the spectral
scheme.

In Section 2, the physical problem and its governing equa-
tions are given. In Section 3, the numerical aspects of this
problem are described. Section 3.1 discusses in detail the non-
standard numerical techniques being used in the spectral algo-
rithm, A general discussion of the ENO code is given in Section
3.2 and this is extended in the appendix since the ENO scheme
implemented is a standard one. The ENO code is compared
for a two dimensional shock—heliurn jet interaction with both
the experiment of Haas and Sturtevant and numerically with
the results of Quirk and Karni [19] in Section 4. In Section 3,
both the spectral and ENO algorithm are used to simulate
a Mach 2 shock—hydrogen circular jet tnteraction. The time
evolution of the flow and the resolution of various schemes are
discussed in detail. Some general comments of this study and
conclusion are given in Sections 6 and 7, respectively.

2, THE PHYSICAL PROBLEM

In this study, a two-dimensional planar shock (O,, N,) in air
moving downstream is collided with a cylinder of light gas;
see Fig. 1. The light gas is either helium (He) or hydrogen (H,).

The physics of the problem are described by the two-dimen-
sional Euler equations in conservative form, which we write as

U+ FU), + G, =0, (2)
where the state vector U is
U = (pf, p, pu, pv, pE)". (3)

The fluid density is p, u = (i, )T is the fluid velocity, E is
the specific total energy, and f is the vector of mass fractions
(fiy voes fh';i) for N, — 1 chemical species. There are N, species
in the problem. The mass fraction of the last species fy may
be derived from that of the first N, — 1 by applying the principle
of conservation of mass:

2f=1 : (4)
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In terms of these variables and the pressure p, the Euler
fluxes are given by

phu pfiv
Pfv- it e
FU) = pu ., GU) = pv . (5)
pun + p pui
piv pvv +p
(pE + p)u (pE + pyu

2.1. Thermodynamic Model

Because the motivating interest in the simutation is reactive
flow where gas temperatures are high, the perfect gas equation
of state is a reasonable approximation for the pressure:

p= p-léT.
R is a mixture gas constant computed by weighting the perfect

gas constant R by the appropriate average of the species molecu-
lar weights M;:

Ni
R=R D fIM,.
i=1

- The specific total internal energy is given by

N
_[TF& _P I, 2 ~ 0
E ju C(T)dT P+2(u+u)+2ﬁh.~,

i=1

where %} is the reference enthalpy of species i and E‘,, is a
mixture specific heat at constant pressure. It is computed from
the individual species specific heats C, by

Ns
C, =2, G, fiM,.
i=1

Each C, is approximated by a fourth-order polynomial fit in
temperature. The coefficients for this approximation were ob-
tained from [16].

3. NUMERICAL IMPLEMENTATION

In two dimensions, a planar shock in air interacts with a
hydrogen (helium) circular cylinder (Fig. 1) inside a shock
tube. The temperature of the hydrogen and air in the undisturbed
region ahead of the shock is set to 1000 K with a pressure of
1 atm. The radius of the hydrogen (helium) cylinder r; is 2 cm
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(2.5 cm), and reflecting boundaries parallel to the x-axis are
placed 6.5 cm (4.45 ¢m) above and below the axis of the
cylinder. The hydrogen (helium) cylinder has an initial diffuse
boundary with the air. All elemenis of the conservative variables
U and temperature T are modified by a factor
s(r) = exp(—a(r/r)’), (6)
where r is the radial distance from the cenier of the hydrogen
(helium) jet and @ = —In & with £ being the machine zero. &
is chosen to be 16 (200).
Both numerical implementations employ the third order TVD
Runge—Kutta scheme of Shu and Osher [24] to solve the system
of ODEs produced by the spatial differencing. It has the form of

L= T+ AlL(D")

]

U ==@U"+ U + ALy

4
o = % (O + 207 + 2 AL(D),

where L is the spatial operator for the fluxes, I/”, U"*', and U*
are the two-dimensional data arrays of the conservative vari-
ables U at the nth and n + 1th time steps, respectively, and
U' and U? are these arrays at the intermediate Runge—Kutta
stages. Note that this method may be rewritten in such a way
that only two levels of storage are required for the Runge—-Kutta
scheme, namely, U and D

3.1. Spectral Shock Capturing Scheme

The spectral shock capturing scheme (spectral code) used
here is essentially the same as the one described f)y Don [7]-
We describe in detail only the additional numerical techniques
that we apply here,

1. During the course of the evolution of the flow field,
instability occurs for various reasons. The most obvious form
of instability in spectral shock capturing methods is the non-
linear instability due to the Gibbs phenomena. This form of
instability can be well taken care of by weakly filtering the
fluxes F, G and the solution U at each time step. The filter
used in this study is the exponential filter described in [7]. For
the &th coefficient of the Chebyshev pelynomial expansion of
a function, the exponential filter has the form of

o=l 0= |k =N, (7
where N is the number of Chebyshev collocation points (poiyno-
mials). The parameter & is chosen so that oy = g, where £ is
the machine zero, i.e., @ = In &. B is the order of exponential
filter o,. The smaller 8 is, the more smoothing is applied to
the function. 8 = 12 is used for the smoothing of F and G,
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and B = 10 is used for U. The temperature T is found to require
a slightly heavier smoothing with 8 = 8.

The other form of instability that can occur is due to spatial
scales developing in the flow field that are too small to be
properiy resolved. For example, the shock compresses the hy-
drogen cylinder as it passes through. Increasingly fewer mesh
points are available to resolve features as the volume of the
cylinder decreases. But at the same tme, vorticity induced by
the shock interaction is creating features with very small length
scales within the cylinder. Hence, large oscillations and/or
spikes tend to appear at this location, and the result is large
errors and oscillations in the fluid density. The situation prog-
resses until a negative fluid density occurs within the flow,
and at this point the calculation will fail due to a floating
point exception.

Increasing the number of collocation points obviously will
only slightly delay, and not solve the problem. There is very
little hope of performing a direct numerical simulation at these
high Mach numbers. Adaptive mesh refinement could be used
to relocate grid points inside the cylinder to certain extent. it
is not clear that whether one should track the hydrogen cylinder
only or all other conservative variables as well. The algorithm
could get extremely complicated and expensive. In any case,
it is not clear that it would be successful for spectral methods.

The other way to alleviate this kind of instability is to increase
the amount of filtering on both fluxes and the solution, say by
using A = 3 adaptively when negative densities occurs. Once
the instability has subsided, the amount of filtering applied can
be diminished by increasing . This does help to stabilize the
solution, but at a great expense in accuracy. One additional
side effect is that the heavy filtering tends to destroy the fine
scale structures. Once they are gone, accurale representation
of the evolution and interaction of fine scale structores with
large scale strictures becomes impossible. The resulting solu-
tion is no better than any low order/low resolution finite differ-
ence scheme with large artificial dissipation.

To get a handle of this situation, we realize that the lack of
resolution within the hydrogen cylinder is a local phenomena
along the fuel-air interface. A global smoothing is inappropri-
ate. Knowing that the hydrogen mass fraction should be re-
stricted to the interval 0 = f, = 1, we sound an alarm if
Ju, = | + £ indicating an overshoot. Typically £ = 0.01. We
can then determine the location of those collocation points (x,,
¥a) where fy (x,, y,) > | — & with € = 0.01, At those collocation
points (x,, v,) the nearest nine grid points are averaged to
obtain a smoother value. It should be noted that the nine point
averaging must be performed on the primitive variables (f;, p,
u, v, T) instead of the conservative variables (pf., p, pu, pv,
PEYi=1, ., N - L

If we denote F as the nine points smoothing operator, then
it is clear that

Fom L g

F(p) ®
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for functions which are not smooth. For example, across a
contact discontinuity, pu is continuous and & would have no
effect on the conservative quantity pr. It follows that u( p/%( )
= watan overshoot and u( p/ F( p) << u at an undershoot. In other
words, this procedure would serve to amplify the oscillatory
behavior of u rather than suppressing it. On the other hand, it
is true that the smoothing of the primitive variables would
result in a minor loss of conservation at selected points along
the air-hydrogen interface. This is an acceptable price to pay,
when the alternative is an uncontrollable instability due to lack
of resolution.

Once the smoothing is done, all relevant conservative quanti-
ties U and variables, for example 7, C,, are recomputed at
these selected grid points (x,, y,) only. This procedure seems
to work fine even for more complicated combustion problems.

2. Since the problem s symmetric about the y = 0 axis,
only the upper half (y = 0) of the physical domain needs to be
computed. This 1s a trivial matter for finite difference schemes
because they are local methods. A simple reflective boundary
condition applied at the center line y = 0 is sufficient.

Spectral methods, on the other hand, are global in nature.
However, it is wise to take advantage of the symmetry in the
flow. A significant saving in terms of memory storage and CPU
usage can be realized. There are two ways to achieve this
objective. The first is to discretize the PDE in the upper half
of the domain 0 = y = y,,, only by placing the Chebyshev
collocation points there. The second way is to use the fuil
domain, —Yuu = ¥ = ¥mx, DUt to store only the upper half of
data (¥ = 0) in the computation. In both cases, the partial
differentiation of the flux in x, ¢F/dx, is computed only for the
upper half of the domain (y = (), realizing a 30% saving in
CPU time.

The first method can offer a very substantial saving in terms
of CPU usage. The partial differentiation of the flux in y,
dG/{dy, can be computed directly from the upper half of the
data. However, there is one complication, namely the boundary
condition at y = §. A Neumann boundary condition is required
there and it is not clear how to do so accurately and stably for
a collocation method in a general nonlinear system of PDE,

Hence we will have to favor the latler method provided some -

additional algorithmic manipulations are taken.

The partial differentiation of the flux in y, 6G/3y, must be
computed by extending the flux G anti-symmetrically to the
negative y, i.e., G(x, vy} = —G(x, y), ¥y = 0. The only exception
is that the flux term puv + p is extended symmetrically. When
smoothing the solution U, however, the opposite is true, Basi-

_cally, one has to distinguish whether the function being differen-
tiated or smoothed is symmetric or anti-symmetric about the
y = 0 axis and extend the data accordingly. Then the full
differentiation in ¥ may be performed. Only the upper half of
data are stored for later use realizing a 50% saving in mem-
ory storage.

Since the differentiation and solution smoothing routines
together form the main computational kernel of the spectral
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code, any savings in terms of CPU and/or storage in those
routines is much appreciated. Using the Cray C90, this numeri-
cal technique reduces the core memeory requirement from 34
mega-words to 22 mega-words and CPU time usage from 1.81
to 1.26 s per Runge—Kutta time step for a 512 X 512 grid
based on the Chebyshev collocation points.

One additional numerical technique that can be used to ex-
ploit the symmetry of the problem in the y direction is the
quarter-wave transform [25]. The implementation of such a
scheme will be studied in future work.

3. Since the flow is confined within the physical domain
at all time (for the spectral code), a simple boundary condition
can be used. For the supersonic inflow, all flow quantities are
specified using free stream values. The subsonic outflow is set to
the previously computed values. The upper wall uses reflective
boundary conditions, i.e., U(X, You) = — U Ve

4. For the number of collocation points (=512) used in
this study, the fastest known method of computing derivatives
and smoothing the solution is by the fast cosine transform
{CFT), despite a non-optimal roundoff error of order (N ’s),
where g is the machine zero {8].

5. The solution at any given time, though highly osciliatory,
can be post-processed to regain an accurate, non-oscillatory
solution away from the shock. The procedure used foliows very
closely the methodelogy applied by Don [7]. The procedure
used in this research consists of two steps, namely, at each
location 0 = y; = yu,

A. the location x, and the strength J of the discontinuity
are determined from the moments of the osciilatory discontinu-
ous solution (Uy(x) by a least squares fit of Uy(x) to a step
function Sy(x, x,, J),

B. Uyx) = F(Upx) — Splx, x,, J) + S(x, x,, J), where
% 1s the filtering (smoothing) operator, 8 is the Heaviside func-
tion with jump J at x, and Sy is the N degree polynomial
approximation of S.

Even though the global fiker & with 8 = 2 (see Eq. (7))
can be used for the term Uy(x) — Sy(x, x,, J} and yields a
reasonably good global solution, the fine scale structures within
the hydrogen cylinder can be severely affected by the strong
smoothing, To remedy this situation, the hydrogen mass fraction
is used to delineate the boundary between the air and hydrogen
interface. The interior of the hydrogen is determined by check-
ing if the hydrogen mass fraction f;_is greater than some toler-
ance tof with tol = 0.01 typically. By marking the interior of
the hydrogen cylinder, the global strong smoothing 3 = 2 is
then applied to solution outside the hydrogen cylinder while a
slightly weaker one 8 = 3 inside.

For those variables without discontinuous jump in the func-
tion, for example f; , a simple smoothing with 8 = 3 is applied.
No attempt is made to reconstruct the solution in the y direction
other than by using a global smoothing with 8 = 3.
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3.2. ENQ Code

The ENO schemes of Osher and Shu are a class of high
order finite difference schemes in conservative form. The reader
is referred to [23, 24] for a detailed introduction. A brief sum-
mary of these ideas is also given in the Appendix, as well as
a description of how to apply the ENO methodology to a real-
gas simulation with multiple chemical species.

In this paper, we present results derived from an implementa-
tion of these ENO schemes on a CM-5. A straightforward
domain decomposition was used to implement the method in
parallel. Each vector unit maintains a separate rectangular sub-
mesh, with a border of “‘ghost’” boundary points surrcunding
the submesh. For a scheme of numerical order N (in the L,
norm) the border is N grid points wide. At each partial time
step in the Runge—Kautta solver these ghost points are initialized
from data at the adjacent subgrid, or if they are at the boundary
of the nuimerical domain, they are initialized by applying the
boundary conditions described in the appendix.

The program is written using a low-level compiler (GCC-
AQ) for efficiency. The computational kernel is implemented
in vector-unit assembly language (CDPEAC). Performance on
a 32-node machine is well in excess of one Gigaflop for the
grid sizes considered here.

Both the third-order (ENO-3) and fifth-order (ENO-5) spa-
tially accurate (in L, norm) schemes are used in this study, We
used the standard flux based ENO scheme based on the line-
wise global Lax—Friedrich flux splitting. The stencil biasing
technique of Shu [22] is used to improve the stability of the
fifth-order scheme.

4. ENO COMPARISON WITH EXPERIMENT

Two experimental results are available that permit a compari-
son of numerical experiments with reality. Haas and Sturtevant
[11] studied in one set of experimental runs shock interactions
with a helium cylinder, The cylinder 1s 5 cm in diameter,
placed in an experimental section 8.9 cm wide. All gases are
at atmospheric pressure and room temperature, taken as 298 K.
In the experiment, the cylinder was contained by a nitrocellulose
microfilm, which permitted some gaseous diffusion. The helium
was estimated to be contaminated 28% by mass with air. The
air surrounding the cylinder was continuously refreshed, and
helium contamination was observed to be smali enough to
ignore, The Mach number of the incident shock was either
1.085 or 1.22. Visualization in the experiment is by spark
shadowgraph, which provides a reasonably precise determina-
tion of the interface between helium and the surrounding air.
The well-defined nature of the initial condition in this experi-
mient, and the fact that the researchers took great care to provide
accurate quantitative measurements of shock speeds allow a
comparison with numerical simulations. The results of an inter-
action with a Mach 1.22 shock simulated via the ENO code is
presented in the next section. This provides a good benchmark
for our code.
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Jacobs [12] presents an experiment with a belium cylinder
interacting with shocks of Mach number 1.093 or 1.15. Unfortu-
nately, the cylinder was created by introducing a helium jet at
the bottom of an experimental section of a shock tube. The jet
is then vented at the top of the section. The requirement that
the jet retain a stable cross section limited the flow rate of the
helium to 65.1 cm’/s, emanating from a 0.9525 cm diameter
nozzle. This low flow rate permits a substantial diffusion of
helium into the surrounding air. Buoyancy also substantially
affects the jet by thinning it. Flow visualization was obtained
by seeding the helium by a fluorescent gas (biacety!l) and illumi-
nating by a planar laser beam. The visualization thus avoids
being contaminated by three dimensional effects due to the
finite height of the heliom cylinder, and this is an advantage
of the experimental setup. Unfortunately the disadvantages of
this apparatus seem to outweigh the advantages. The heavy
biacetyl gas diffuses much more slowly into air than helium,
and the extent of the diffuse helium air interface is not apparent.
This presents two difficulties for numerical reproduction of the
experiment. The first is that one can only guess at what initial
conditions to use. The other is the fact that the very diffuse
helium air interface is known to have the effect of suppressing
perturbation growth generated by the Richtmyer—Meshkov in-
stability. The resulting images, taken from the center of a diffuse
jet, are very smooth. They obviously cannot resolve the issue
of how three dimensional effects affected the helium air inter-
face in Haas’s experiment, as the interface is more stable and
in any event, perhaps not visvalized at all.

Both of these experiments applied weak shocks to the helium
cylinder. The low Mach number of these shocks prohibit simu-
lation by use of the spectral code applied here. Spectral codes
place more demands on the applied boundary conditions in
order to achieve stability, A consequence of the limited abilities
of the current boundary conditions is an inability to handle the
subsonic inflow conditions present in this type of problem.

4.1, Numerical Comparison

The result of the ENO numerical simulation of a Mach 1.22
shock—helium cylinder interaction (see Fig. 2) may be com-
pared with the experiment in Fig. 3. The experimental shadow-
graphs provide a visualization of the magnitude of the second
derivative in density [13). A reasonable comparison may be
obtained with a pumerical Schlieren photograph, which pro-
vides a picture of the norm of density gradient. We follow the
methodology of Quirk and Karni [19] and plot a grayscale
image of

exp( —k|Vpl/max(|¥V p])).

Esthetically pleasing results are obtained with & = 120, A
diffuse interface between air and helium was used for the nu-
merical initial condition. & = 200 was chosen in Eq. (6) so
that the width of the interface comprised roughly three numeri-
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FIG.2. Computational geometry used to emulate Sturtevant and Haas's ex-

periment.

cal grid points. The radius of the helium cylinder r, = 2.5 cm
as shown in Fig. 2.

Figures 3A-3H provide a picture of the early time behavior
of the flow as the shock initially compresses the helium cylinder
and refracts through it. We compare them with Haas and Stur-
tevant’s results (frames a-h). Because the times measured ex-
perimentally did not have high absolute precision, some discrep-
ancies may be seen in the relative position of shocks, especially
in the earlier pictures.

Due to the low Mach number one might expect linear geomet-
rical optics 1o provide a qualitative explanation of the results.
At time 32 and 52 ps the shock reacts to the higher sound speed
in helivm by refracting and advancing ahead of the surrounding
shock front in air. Meanwhile, the shock undergoes a compli-
cated form of Mach reflection as it diffracts around the exterior
of the cylinder, forming a four shock intersection. At 62 us,
the refracted shock emerges from the cylinder, leaving behind
an internal reflection which forms two cusps inside the cylinder.
At 82 us, the shocks derived from the first internai reflection
inside the cylinder emerge and cross just in front of it.

The later pictures present the long time evolution of the
cylinder as induced vorticity causes it to first assume a kidney
shape and then split into two vortices propagating in the stream-
wise direction. Reflections returning from the top boundary,
provide a complex picture in frame (F). Initial perturbations in
the surface of the cylinder continue to grow causing mixing at
the interface.

It is worth making an additional remark regarding the last
picture at time 983 us. The vortex is well developed by this
stage in the flow evolution, and it is causing fluid to be entrained
inside the cylinder, effectively splitting it in two. The entrained
fluid appears to be forming a ‘‘mushroom’’ shape as it pene-
trates into the cylinder from the top. This ‘‘mushroom’ seems
to be a robust feature of the flow. We have seen it in a variety
of different simulations with different flow conditions. If the
numerical scheme has enough resolution, it almost always
seems to be there. But observing this phenomenon does require

DON AND QUILLEN

a high resolution numerical simulation, and we will use this
fact later to provide an indication of when flow features are
being properly resolved.

In Fig. 4 and Table I, we present a comparison of shock
speeds and the speed of various elements of the flow field and
compare them with Haas and Sturtevant’s results. The results
agree about as closely as might be expected. The most signifi-
cant errors are obtained with the measurement of the vortex
propagation speed V, and the up-stream interface space V.
The error in these results may mostly be due to misinterpreting
the definitions used by Haas and Sturtevant. The position of
the upstream interface initially does not possess a constant
velocity—it is accelerated over some distance by the flow. The
velocity derived by a line fit thus varies depending on how
many points are used. Values of velocity may be derived that
vary from 160 to 200 m/s. We chose a high value within the
10% experimental error as a compromise between honesty and
a desire to indicate that values measured by the experiment
might be lower than in a calculation which ignores the contribu-
tion of the microfilm present in the experimental apparatus.
The definition of the vortex head is not precisely clear. It was
taken as the asymptotic slope of the downstream interface. We
omit the measurement of Vy present in Haas and Sturtevant,
as it is unclear where to measure it in the flow field. Another
obvious comment to make about the measured speeds is that
it is unfair to criticize Quirk and Kami’s method for being only
approximately conservative. The conservative ENO method
essentially duplicates the shock speeds they reported.

These numerical results are obtained by applying a fifth-
order ENO method for the spatial discretization, and a third
order TVD Runge-Kutta solver in time. The computation is
performed on a 496 X 248 point uniform grid, and it uses a
moving coordinate system that translates with approximately
the same mean velocity as the cylinder after the interaction.
The characteristic boundary conditions seem to be sufficient to
permit shocks to leave the computational region. Reflecting
waves from these boundaries appear to be entropy waves which
have a strength of approximately 1% of the pressure of the
outgoing shock. For the times measured here, these entropy
waves do not succeed in propagating back close enough to the
cylinder to cause interactions.

5. MACH 2 SHOCK-HYDROGEN INTERACTION

As can be seen in the previous section, Haas and Sturtevant’s
shock-helium cylinder interaction is well simulated by an Euler
code, even with no attempt made 1o model viscosity. But this
experimental problem is not an ideal setting for studying shock—
cylinder interactions.

The first objection is that the flow geometry itself complicates
the phenomena under study. The cylinder is more than one-
half the width of the experimental channel. Blockage effects
in the flow field should thus be quite important. From the point
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FIG. 3. Comparison of the experiment (a-h) and ENOQ calculation (A—H) for the Mach 1.22 shock helium cylinder interaction. The corresponding times
are (a, A) 32 us, {b, B) 52 us, (¢, C) 62 ws, (d, D) 72 ps, (e, E) 82 us, (f, F) 472 us, (g, G) 674 us, and (h, H) 983 ps. Experimental pictures reproduced
with the permission of Cambridge University Press from Hass and Sturtevanu [11].

of view of studying how fluid instabilities are driven by the
shocks present in the flow field, the picture is considerably
complicated by the fact that reflections from the top and bottom
walls of the flow section return quickly to influence the cylinder.
The nearly discontinuous initial condition ensures that small
wavelength perturbations will be amplified by the fluid instabili-

ties [4]. A less complicated evolution may be obtained by
starting with a more diffuse interface. Finally, once vortices
form and begin propagating, they will be influenced by their
images due to reflection and the boundaries, and travel faster
than otherwise would be expected.

Another objection arises purely for numerical reasons. The
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FI1G. 3— Continued

central concern with these numerical simulations is the fact
that in long time integrations of the flows, errors (dissipative,

- dispersive, roundoff, to name a few) arising from the spatial
discretization are cumulative. Eventually the solution can be-
come unreliable. The low Mach number of the interaction and
denser gas within the cylinder imply that the characteristic time
scale for the flow evolution will be quite slow (see Yang e? al.
[32] for a derivation of flow time scales). A faster Mach number
and hydrogen within the cylinder imply a much faster time
scale, and this substantially reduces the number of time steps
required by the numerical scheme, even taking into account
the reduced time step implied by the CFL restrictions of an
explicit code. The resulting computation is far less computation-
ally demanding, and it relies much Iess on the accuracy of the
time integration method. The resulf is a much better setting in
which to determine how schemes with different spatial accura-
cies affect the outcome of the simulation.

5.1. Evolution of the Shock—Hvdrogen Interaction

In this case, a Mach 2 planar shock located at x = 0.5 cm
moves downstream and interacts with a circular cylinder of
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hydrogen with center at (x., y.) = (2.75 cm, 0 cm) and radius
r = 2 c¢m (see Fig. 3).

In Fig. 6, the density of the spectral simulation and the two
best complete ENO runs for the Mach 2 shock interaction with
the hydrogen cylinder at various time ¢ = 20, 40, 60, 80, 120
ps are shown. All density contour plots have 40 contour lines
between 0.05 and 1.2

The ENO solutions are based on the third order version with
1472 X 736 grid points (left) and the fifth order version with
752 X 376 grid points {middle). The rightmost figure is the
raw data of the spectral stmulations with 512 X 512 Chebyshev
collocation peints. The post-processed data of the spectral solu-
tion is given in the left most column of Fig. 7. The size of the
domain used is 0 = x = 20 cm, —6.5cm = v £ 6.5 cm. In
Fig. 7, the same spectral code is run with the same parameters
as the previous case with the exception that the domain size
in x is reduced to 0 = x = 12.5 cm. With the same number
of Chebyshev collocation points, this increases the effective
resolution of the solution for the smalier domain, or equivalently
increases the number of collocation peints to =800 X 512 in
the larger domain. Both the raw and post-processed density
solution are given in the middle and the rightmost column
respectively. The time shown are 1 = 20, 40, 60, 80 us.

The evolution of the flow in this case is very similar to that
presented by the Mach 1.22 shock—helium cylinder interaction.
The shock passes through the cylinder compressing it. The
same four-shock intersection may be seen as the shock diffracts
around the circular fuel-jet. A vortex forms, and it entrains
fluid inside the cylinder. The difference in this case is the much
higher speed of the interaction—the vortex formns while the
shock is still diffracting around the cylinder.

It is worth noting that the vortex forming at time 40 ps in
the spectral simulation (see middle column of Fig. 7) was
not seen for low resolution/low order schemes. The vortex
manifests itself as a growing instability in a kink at time 20
ps in the upstream the air—hydrogen interface. This kink was
dismissed as a numerical artifact in the beginning of our re-
search. We thought that it was a manifestation of the numerical
“‘ringing’’ seen when using spectral methods for discontinuous
solutions (Gibbs phenomena). It was a surprise when its exis-
tence was confirmed by running higher resolution and higher
order ENO calculations. This points out the fact that the spectral
methods can still retain high order information when applied
10 discontinuous problems, even when the computed solution
is very oscillatory.

Numerically, despite the oscillatory pictures of the raw den-
sity data, the post-processed density data agree quite well with
the high resolution/high order ENO schemes. The large scale
features are basically consistent between the spectral and the
high resolution ENQ results. The most variation is seen in the
internal structure of the hydrogen cylinder, and this is best seen
by plotting the mass fraction fy, of hydrogen. All hydrogen
mass fractions are plotted with 15 contour lines in the range
0.01-1.01.
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FIG. 3——Continued
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0o (3 Time = 40 ps. A consistent picture can be seen as early
as time 40 us. Figure 8 shows the results of the ENO third-
0.05 order solution for grid size 496 X 248, 752 X 376, and 1472

X 736. Figure 9 shows the results of the ENO fifth-order
solution for grid size 752 X 376 and 1472 X 736. It also shows
the solution obtained by the spectral code with 512 X 512
Chebyshev collocation points.

Attime t = 40 us, a small narrow jet of fluid begins penetrat-
ing the cylinder from the interior of the air jet and it rolls up
to form a vortex. It is clearly seen in the figures as soon as
enough grid resolution is attained. In a few relatively low grid
resolution cases, the formation of the vortex Is not as well
defined as at higher grid resolutions or as in the spectral solution

0.04 =

0.03

0.02 -

0.00 0.0 0.02 0.03 0.04 0.05 006 0.07 0.08

due to numerical dissipation. In general, these figures seem to
be consistent and similar to each other. However, we might
expect that the lower order ENO schemes would have increasing
H difficulties as later times are considered.
0.06
Time = 60 us. At time ¢ = 60 us, a jet of air penetrates
0.05

the back top side of the cylinder for both the third-order and
fifth order ENO schemes, and the spectral code (Figs. 10-12).

A “‘mushroom’’ shape rollup of the air can be seen clearly
in Fig. 12. It is related to the Rayleigh—Taylor instability which
describes denser fluid lying above a lighter one in a gravitational
field. The heavier Rluid forms fingers descending down into the
lighter fluid below. A similar fingering can result from the
impulsive acceleration due to a propagating shock.

In the lower resolution cases this feature is captured only as
a singie jet that rolls up into a vortex, Higher resolution images
ans: Bor ot it oo T rmrT - provide a complicated picture that is rapidly becoming turbu-
lent. Surprisingly the third-order calculation on the 1472 X
736 grid produces a simple jet without a mushroom. But it is
visible for the fifth-order scheme on the 752 X 376 grid, which
still compares fairly closely with the spectral scheme. At later
times, however, features increasingly disappear due to numeri-
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FIG. 4. Mach 1.22 shock—helium interaction. (Left) Locations where velocities are measured. V,, shock velocity; Vi, refracted shock, Vr; transmitted
shock; V,, upstream edge; ¥y, downstream edge; Vj; air jet head. (Right) x—r diagram.
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TABLE I

Velocities Measured from the ENO Calculation Compared with Haas and Sturtevant’s Experiment and Quirk and Karni’s Calculation

Velocity
Vs VR VT vm Vuf Vd‘; VJ V\
Computation 424 936 377 186 115 144 226 146
Experiment 410 900 393 170 113 145 230 128
Quirk and Karni 422 943 377 178 —_ 146 227 —
Qur error +3.4% +4.0% —4.1% +9.4% +1.8% —0.7% -1.7% +14%

cal diffusion, and the ENO schemes presents a misleadingly
simple picture of the internal structure (see Figs. 6 and 7).

6. DISCUSSION

The truly surprising result of the calculations described above
is the amount of resolution that is required to properly resolve
features within the circular fuel-jet. Pictures consistent with
the expected physics are visible at guite low resolutions. For
example, a beautiful roll-up in the cylinder due to vortex forma-
tion is visible in the third order ENQ calculation on the
752 X 376 gnd (Fig. 10). This picture is essentially unchanged
for somewhat lower resolutions. Since this is precisely the
physics that one might expect, it is natural to believe that the
flow has been resolved.

But the third-order 1472 X 736 calculation is beginning to
show that the picture is not as simple as one might have hoped,
and higher order calculations demonstrate clearly that more
complicated phenomena are afoot. The spectral scheme pro-
vides especially valuable hints in this regard. It demonstrates
these phenomena at lower grid resolutions and computational
cost,

To demonstrate that this general picture remains valid even
when the physical model is substantially changed, we present
one plot derived from a real gas Navier-Stokes simulation which
includes chemistry modeled by a one step reversible reaction
2H, + O, © 2H,0. We show the hydrogen mass fraction raw

20cm

\4

6.5cm

_
\Rcflection

Boundary Cond.

FIG. 5. Computational geometry used for the Mach 2 shock-hydrogen
cylinder interaction.

data at time 55 us in the right-most picture of Fig. 12. Compar-
ing with the left-most picture, the shape of the mushroom and
the Internal structures are slightly modified by the combustion
and viscous process, but the general features are quite similar
for both the Euler and the reactive Navier—Stokes simulations.

The results presented here hint very strongly at the necessity
for high order schemes for calculating long-time evolution of
flow fields. The major disadvantage these schemes have is the
difficulty in applying these methods to irregular adaptively
refined grids. The particular ENO scheme chosen is based on
calculating derivatives of fluxes. It requires four times less
computational work to implement this scheme than a finite
volume ENO scheme (based on cell averages) in two dimen-
sions. But unlike the finite volume schemes, there is currently
no variant of the method with higher than second order accuracy
that remains conservative when the grid is locally refined.

The computational burden of this particular flow problem
may be greatly reduced by taking advantage of an adaptive grid.
Quirk and Karni [19] reported that the cost may be decreased by
up to a factor of 50 using the adaptive mesh refinement, espe-
cially for earlier times in the problem. The fact that they used
a second order method does affect the reliability of their results
for late times, and might contribute to a reluctance on their
part to report these results.

An additional complication of adaptive grids may be worth
mentioning—the effective numerical viscosity present in their
scheme depends on the local grid resolution, and this varies
considerably over the computational region. It is possible that
this introduces local perturbations in the flow which are ampli-
fied by the fiuid instabilities, The results depicted in Fig. 3 use
a regular grid, and the method chosen to do upwinding is a
Lax—Friedrich flux using a wave speed chosen as the maximum
over an entire line in the computational region, as described in
Section A.1. Thus the effective numerical viscosity is quite
uniform. If we change the flux to a local Lax—Friedrich flux,
the numerical viscosity becomes more irregular. In Fig. 13, we
present the resuolts of a calculation using a local Lax—Friedrich
flux were the maximum wave speed over the nearest six grid
points is used. The result is very different from the previous
case (Fig. 3H). The vortex has broken up, and the *‘mush-
room”’ formed by the air penetrating the downstream side of
the cylinder is not recognizable. The picture presented is much
less realistic and correlates much less well with the Mach 2 case.
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FIG. 6. Density contour plot of the ENO code versus specral code for the Mach 2 shock-hydrogen cylinder interaction at ¢+ = 20, 40, 60, 80, 120 us.
ENO third order with 1472 X 736 grid (left), ENO fifth order with 752 X 376 grid (middle) and Spectral raw data with 512 X 512 Chebyshev collocation
points (right) with 0 < x = 20 ¢m, —6.5cm =< y = 6.5 cm. :

6.1. Computational Cost demanding. But for a given amount of CPU resources, they
seem to provide better resolved results. The fifih-order ENO

As the previous discussion makes clear, high order schemes schemes require roughly 60% more CPU time per time step,
provide more accurate solutions and resolve features better for  at a CFL number #to that of the third-order schemes, and so
a given grid resolution. They are computationally much more  are up to five times as expensive. But for these explicit schemes,
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Time=40 ps

" Time=40 pg

FIG. 8. Hydrogen mass fraction for the Mach 2 shock—hydrogen cylinder
interaction at ¢ = 40 ps, ENO third order with grid size 496 X 248 (top),
752 X 376 (middle) and 1472 X 736 (bottom). The domain size is 0 cm =
¥x=20cm, —65cm =y =65 cm.
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FIG.9. Hydrogen mass fraction for the Mach 2 shock-hvdrogen cylinder
interaction at ¢ = 40 ps. ENO fifth order with grid size 496 X 248 (top),
752 % 376 (middle), and spectral raw data with 512 X 512 Chebyshev colloca-
tion points (bottom). The domain size is 0 cm < x = 20 cm, —65cm =y
= 6.5 cm.
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FIG.10. Hydrogen mass fraction for the Mach 2 shock—hydrogen cylinder
interaction at r = 60 us. ENO third order with grid size 752 X 376 (top}, and
1472 X 736 (middle). ENO fifth order with grid size 752 = 376 (bottom).
The domain size is O cm < x = 20 em, —6.5 cm < y < 6.5 cm.
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FIG.11. Hydrogen mass fraction for the Mach 2 shock-hydrogen cylinder
interaction at + = 60 us. ENC fifth order with grid size 496 X 248 (1op),
752 X 376 (middle), and post-processed spectral data with 512 X 512 Cheby-
shev collocation points (bottom), The domain size is 0 ¢m = x =< 20 cm,
—6S5cm=y=65cm
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FIG.12. Hydrogen mass fraction for the Mach 2 shock-hydrogen cylinder
interaction. Grid size is 512 X 512 Chebyshev collocation points. The domain
size is 0 em = x = 12.5 cm, —6.5 cm = y = 6.5 ¢m. Post-processed spectra
data at t = 55 us (top) and r = 60 us (middle). Spectra raw data with viscosity
and combustion at ¢ = S5 ps with O cm = x = 20 cm, —6.5cm = y = 6.5
cm (hottom).
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FIG. 13. Mach 1.22 shock-helium cylinder interaction at time 983 us,
using a local Lax—Friedrich flux.

high order/high resolution ENO schemes when the two are
compared on the same grid. Boundary conditions are more
difficult for the spectral methods however, and it may be possi-
ble to carry out ENQ calculations on a small enongh domain
so that they are competitive. In any event, finite difference
methods like ENO schemes are much easier and more efficient
to paralleiize, and may be expected to have an advantage as
larger parallel machines become available.

7. CONCLUSION

We bave applied two high order shock capturing methods
to the study of a air shock—fuel cylinder jet interaction. A
spectral code and a parallel ENO finite difference code are
applied at a variety of resolutions and numerical orders to a

TABLE Ii

CPU Time Requirements for the Mach 2 Shock—Hydrogen
Cylinder Problem Calculated to 135 us

Grid No. of time  CPU time
(NX M) Order steps () Nodes  Machine
240 X 120 3 1,908 1,072 32 CM-5
496 X 248 3 4,492 8,470 32 CM-5
752 % 376 3 7.534 31,486 32 CM-5
240 x 120 5 5,838 4,930 32 CM-5
496 X 248 5 12,962 37.824 32 CM-3
752 X 376 5 20,448 136,143 32 CM-5
1,472 X 736 3 15,508 18,396 512 CM-5
1,472 X 736 5 42,1832 77,760 512 CM-5
512 X 512 Spectral 3,650 4,562 1 C90
800 X 512 Spectral 6,900 13,800 1 C90

“By extrapolation from a partial computation.
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FIG. 14. CPU hour usage of each scheme for different problem sizes, ¥
is the number of grid points in x.

Mach 2 interaction. The ENO code was validated by compari-
son with an experimental Mach 1.22 interaction with a helium
cylinder jet. The optimized parallel ENO implementation makes
practical the vuse of high resolutions and fifth-order spatially
accurate schemes, facilitating comparison with the spectral sim-
ulation. The higher the resolution and the order of the ENO
scheme, the better the comparison for long-time integration
with the spectral method. Post-processing of the raw spectral
data generates an accurate solution from the spectral compu-
tation.

In part 11 of this paper series, we present results for simula-
tions with viscosity modeling and simple chemistry. We report
quantitative results for mixing efficiencies achieved and com-
pare with analytical models for the vortex core spacing, vortex
strength, and the time scales in the problem. We discuss the
effect of varying the cross-sectional shape of the cylinder,
small-wavelength perturbations of its surface, and how diffuse
the cylinder interface is initially on the resulting flow and
mixing efficiency. We also consider the effect of multiple jets
interacting with a shock.

APPENDIX A: ENO SCHEME

The ENO schemes of Osher and Shu are a class of high order
finite difference schemes in conservative form. We summarize
briefly here the ideas behind the discretization. Consider the
model equation

u, = —gu(x));, ()]

which is a one-dimensional scalar conservation law. We may
discretize the spatial derivative in the following way:

§(xj—uz) - é(xjwz)
Ax ’

u () =

(10)
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Here we assume a regular grid of points x;. The grid spacing
is Ax = x50y — %;. §(x+12) is 2 consistent low order approxima-
tion to the flux g(u(x)) evaluated at a point midway between
x; and x;;. In flux-based ENO schemes, this approximation is
clearly arranged so that (1/AX) §(x—12) — 8(x410)] 18 actually
a high order approximation to the derivative —g(u),. This may
be accomplished in the following way. Let

P(xn) = >, glu(x)).

ks

(1)

This defines P(x} on the points x;, ;. Given a desired order 5,
of approximation of the spatial discretization, a stencil of points
is chosent X112, Xoi3zs worr Kong+1) CODSisting of 5o + 1 grid
points, We may then compute a polynomial interpolant of P.
The obvious way is to use a Lagrange polynomial interpolant

.r+50 Easy X — xi+1,12
Py =2, [T{———] Plasin)- (12)
k=s j=s NEk+U2 T X+inz

=k

Then §(x10) = Ax(aP(x)/é‘x)Lj_m will yield a high order ap-
proximation to the derivative in eq. (9):

og (i)
dx

_ Slx ) — g(xjHIZ)
Ax

+ O(Ax%). (13)

=X
4

This can be explained in the following way: sappose a function
h(x) exists which is a deconvolution of g

a+Axf2

1
s == [T e (14)

Then g!(xj') = (lle)[h(x_f+]12) - h(.xl‘_l,lz)] exaCtly.
So we need only find a high order approximation to 4, and
this will serve for . Now

1 Raats — L Frein _
o ar=3 - [ apar=3 g0, 05)

= 12 =

soby (1) [ h(2)di = AxP(x), and AxP'(x) = h(x). Therefore
Ax times a high order approximation to the derivative of P{x)
will serve for g, The solution is to interpolate P with a polyno-
mial of order sy. Then £ will be approximate h to order 5, + 1
and the difference in (10) will be accurate to order s;.

A.l. Choosing a Stencil

Missing in the above discussion is a method for choosing a
stencil of points {5412, s Koyt w25 to be applied. In fact, the
stability of the numerical scheme is determined by this choice.
For example, it is known that a consistent bad choice of the
stencil will yield a linearly unstable scheme. A method that
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has been seen to work well in practice is to construct the stencil
recursively by comparing magnitudes of undivided differ-
ence coefficients.

The undivided difference coefficients D[x,_, ..., X;++12] @re
defined inductively in the following way:

Dlx 12y Xosn] = g{x)
(16)

D[x.r*].fla rees -x:+n+ll2] = D[xs+11‘2v waey x:+n+l.'2]
- D[xs—ln'Z PR x:+rx—lf2]-

Stencil construction in an ENO scheme works in the follow-
ing way: If a stencil

{Xer12s oo Erbar1n}

is chosen for the scheme of order s, then either the stencil
{xs-UZs rary xs+n+1!2} or

Xm0 e xx+ez+3f1}

are possible choices for the stencil of the scheme of order
n 1+ 1, The choice between stencils is made depending upon
the magnitude of the difference coefficients. The first stencil
is chosen if its associated difference coefficient is less in magni-
tude that the difference coefficient associated with the sec-
ond stencil:
|D[x,_,,2, o Xopne 2] |D[Is+1/2, ---,I.s+n+3.'z]'- (17)
A minor modification of this algorithm has proven to work
better in practice [22). The idea is to preferentially choose
stencils that are closer to being centered differences by biasing
the comparison in (17) by a multiplied constant. That is the
approach used in this paper. The choice of the initial stencil
for the zeroth order scheme is determined by upwinding consid-
erations and is described below.

A2, Upwinding

In order to achieve stability the numerical scheme must take
into account the natural propagation of waves in the preblem,
Doing this well in practice is a difficult exercise for a nonlinear
system of equations. We begin by considering the scalar equa-
tion {9) again. In this paper, we apply a version of the Lax—
Friedrich flox splitting,

glu) =g"(w) + g (), (18)
where g*(x) = ¥ g(u) + au)), and « is a wave speed, taken
as max|g'(x)| for a global Lax—Friedrich splitting, for a less
diffusive flux a(x.,) = max% g’ (w)|. Compromises be-
tween these two extremes are also possible, where a maximum
is computed locally over some number of grid points.

81 (x;1) and §7(x;11,2) are calculated separately in the same
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manner that g (x;) was above. The initial starting stencil is taken
as 1 X-ins Ij+1.'2} for * and {xjHlZv Xj+3/2} for §~. For g,
Px) = Eksj g (%) is interpolated, instead of P(x;) as before.
Having calculated g*, we revise our definition of £,

p=g e

It is this quantity that is actually used in Eq. (10) to discretize
Eq. (9).

A 3. Systems

A linear system of equations

U, = — AU, (19)
may be discretized by diagonalizing the system, and then solv-
ing for each component as before. For example, if A can be
written A = L' AL, where A is diagonal, then LU, = —ALU,.
Define a new state vector Y = LU. Then in terms of this new
parameterization
Y. = -AY,.

The system is completely decoupled, and each component may
be handled independently as before.

This approach may be applied locally in nonlinear systems
to approximately decoupie them as well. Suppose we desire a
spatial discretization of the sysiem

U, = —FU), = “A(UU,
of the form

U,(ch) = ‘Al; (f“(xj—l.'z) - i‘(xj-Hﬂ))‘

In order to compute F at each half grid point X412, WE CONStIUCE
a different flux spiitting

F(x) = Lil(xjﬂfz)(FJf(x) + F(x)),
where
F(x) = L) FUE) = Al U)).

L7'(x), A(x), and L(x) are derived from the diagonalization of
a matrix A{x) as with the linear case. The question is, what
matrix A to use at the half grid points x,,,. Now A(x) =
aF(U)/aU|Uy,,. We need some average of A(x;) and A(x,,) to
use for A(x,-+mj. There is more than one possible way of taking
this average, but for the purposes of this paper, adequate perfor-
mance is obtained by a simple average:
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1 fap fu*+ 07 ap o dp
b.,:—- - —— — + p—= — =
: 2(6e( T ) e 2y

Using the thermodynamic model presented in section 2.1,
computing the partial derivatives of p is straightforwatd,

-1 w1
. f: l_ziélﬁ
= —_—t —— Tie, f
r (EM My, pRT(e, 1)
80
op 1 l porT
L= TH+E&—.
o, (M. MN,)" Tof,
Now

N,“I ;
erf)=2f ( | -;7 (C,(T) ~ RydT + h?)
+ (1 - sz) [ D — Ryar
e i MN; Pk .

and de = (de/oT) dT + {deldf) df;, so

T _ del of;
o |, defaT
ae T Cp, CFN
i (5 MM) P
e = =
=GR

Thus

ap 1 1 P de
Lo - pRT - —=—==.
o, (Mf MN,) PRI, R

Calculating dp/de is somewhat easier,

dp ol 7 de pR

a_e.F:p de ar

Simplest of all,

DON AND QUILLEN

Qs

/2

ol

©

Due to the fact that u is a repeated eigenvalue in A the above
diagonalization is not unique. The above choice is designed to
produce a matrix L that is as sparse as possible. This has the
effect of reducing the number of operations carried out in the
inner loop of the computational kemel, and is the most obvious
way of reducing computational cost of the procedure.
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